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Annona muricata (Annonaceae) or locally known as 
Guyabano in the Philippines, is a commonly used natural 
remedy for several illnesses, including type 2 diabetes 
mellitus. The bioactivities and therapeutic effects of this 
medicinal plant have been extensively studied [1]. A variety 
of foreign and local studies have demonstrated that Annona 
muricata leaves offer several potential pharmacological 
activities such as hypoglycemic effects [2,3], antibacterial 
[4], antifungal [5], antimalarial [6], antimutagenic [7], 
anticonvulsant [8], sedative [9] and insecticidal [10].

Introduction

Diabetes mellitus (DM) is a chronic disease where the 
blood glucose concentration of a patient is consistently high. 
Among the types of DM, type 2 diabetes mellitus (T2DM) is 
the most significant contributor to the burden of diabetes 
globally, accounting for up to 90% of all cases of diabetes 
worldwide [11]. It is primarily characterized by two factors: 
defective insulin secretion and the inability of insulin-
sensitive tissues to properly respond to insulin [12]. Due to 
its complex pathogenesis, novel targets have emerged and 
become the focus of diabetes research [13,14].

R E S E A R C H A R T I C L E

ABSTRACT

Conclusion: Based on the binding energies of the parent compounds and derivatives, they exhibited comparable 
binding affinity as the controls. Moreover, the designed derivatives may be synthesized and further investigated 
for potential biological effects towards 11β-HSD1, PTP1B, and SIRT6 through in vitro and in vivo experiments.

Background: Type 2 diabetes mellitus, or T2DM, is one of the world's most chronic health problems that is linked 
to numerous deaths and high health care expenses. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), 
protein-tyrosine phosphatase 1B (PTP1B) and mono-ADP-ribosyl transferase sirtuin-6 (SIRT6) were among the 
novel proteins and focus targets of diabetes research. Annona muricata is a commonly used natural remedy for 
several illnesses, including type 2 diabetes mellitus. However, most of these traditional claims have received few 
molecular evaluations. 
Objectives: This study investigated the phytoconstituents and derivatives of the leaves of A. muricata by 
evaluating their binding affinities towards selected novel T2DM-related protein targets through in silico methods. 
Methodology: This study screened the potential lead compounds from the leaves of A. muricata by evaluating 
the binding energies (kcal/mol) of the parent compounds and derivatives with the targets compared to the native 
ligands and known substrates through molecular docking. 

Keywords: Annona muricata, Type 2 Diabetes Mellitus, In silico methods, Alkaloids, Phenolic compounds

Results: The 8 parent compounds – the alkaloids coreximine and isolaureline, and phenolic compounds 
chlorogenic acid, epicatechin, kaempferol, kaempferol 3-O-rutinoside, quercetin, and rutin were selected for 
bioisosteric modifications. Furthermore, after docking simulations of derivatives, compounds ACM018, ACM021, 
ACM024, ACM036, and ACM044, are the top 5 derivatives for 11β-HSD1. In PTP1B, ACM014,  ACM020, ACM021, 
ACM024, and ACM028 are the top 5 ligands. Lastly, BCM008, BCM022, DCM004, DCM025, and DCM027 are the 
top 5 derivatives for SIRT6.
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 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) is 
a nicotinamide adenine dinucleotide phosphate (NADPH)-
dependent enzyme that is vastly expressed in human tissues, 
specifically in fat and liver tissues, and is responsible for the 
conversion of cortisone to its active form cortisol, which is 
necessary for homeostasis regulation [15]. Glucocorticoids 
such as cortisol oppose the primary effect of insulin, which is 
to increase glucose uptake [16]. Increased tissue activity of 
11β-HSD1 may result in increased intracellular cortisol levels, 
resulting in metabolic changes such as insulin resistance, 
promotion of gluconeogenesis, impaired insulin signaling 
and increased hepatic glucose [16]. The inhibition of 11β-
HSD1 is a viable target for the therapy of glucocorticoid-
associated conditions, particularly T2DM [17,18].

Protein-tyrosine phosphatase 1B (PTP1B) has been 
recognized to negatively regulate the insulin signaling pathway 
[19]. PTP1B is responsible for insulin receptor desensitization that 
has been associated with the development of insulin resistance. 
It regulates this process by dephosphorylating phospho-tyrosine 
residues in the tissue insulin receptor kinase, halting the entire 
insulin action process. PTP1B inhibition may prolong insulin 
receptor activity; therefore, it has emerged as a potential target 
for the treatment of type 2 diabetes mellitus [20]. 

Sirtuin-6 or Mono-ADP ribosyltransferase-sirtuin-6 
(SIRT6) is a stress responsive protein deacetylase, and mono-
ADP ribosyl transferase enzyme encoded by the SIRT6 gene. 
Its function in multiple molecular pathways are related to 
aging, including DNA repair, telomere maintenance, 
glycolysis, and glucose metabolism and β-cell normal viability. 
SIRT6 has been shown to play a critical role as the principal 
regulator of glucose homeostasis. It participates in the 
expression of gluconeogenesis genes, specifically in the liver 
[21]. The absence of SIRT6 enzyme has been attributed to 
increased blood glucose levels therefore, pharmacological 
modulation of SIRT6 has been the target of several 
compounds directly relating as a future treatment of type 2 
diabetes mellitus [21,22]. 

On the other hand, the conventional methods of 
discovering drugs from natural products, such as extraction, 
qualitative and quantitative identification, are risky and time-
consuming processes, the in silico approach, comprised of 
computational methods, facilitates the drug development 
process by making the analysis efficient [23]. Molecular docking 
is one of the most extensively employed in silico method. This 
technique is designed to predict the potential of an active 
molecule in the form of a ligand to form a stable complex with a 
target protein, usually a receptor [24]. This study investigated 

Two models of 11β-HSD1, PTP1B and SIRT6 were taken 
from Research Collaboratory for Structural Bioinformatics 
(RCSB) protein data bank (PDB) and AlphaFold Protein 
Structure Database. The PDB models were as follows: 11β-
HSD1 (PDB code: 2BEL), PTP1B (PDB code: 2CM8) and SIRT6 
(PDB code: 6QCD) while the protein structures of AF2 models 
were predicted using DeepMind's Colab notebook [25,26]. 

Preparation of Protein Receptors

AutoDock Vina was utilized for binding affinity measurement 
through molecular docking [33]. Grid-box optimization was 
done by redocking the co-crystallized ligands to the empty 
active binding site of PDB models while the detection of binding 
pockets of AF2 models were predicted using Discovery Studio 
Visualizer [34]. 

Molecular Docking 

Preparation of Ligands

Methodology

the binding affinities of Annona muricata leaf constituents and 
derivatives towards selected proteins related to Type 2 
diabetes mellitus through in silico methods. 

The 3D structures of the 36 parent compounds from the 
leaves of Annona muricata listed in Table 1 were obtained from 
PubChem server. Each ligand was cleaned in 3D, prepared, and 
minimized using MMFF94 force field of MarvinSketch 15.6.29. 
The resulting .mol files were converted to .mol2 file format 
using OpenBabelGUI v.3.1.1 and further processed using 
AutoDock Tools 1.5.7. Non-polar hydrogen atoms were 
merged, Gasteiger partial charges were added to the ligand 
atoms, and the torsion count or rotatable bonds were checked 
with the default settings of AutoDock Tools 1.5.7.  The resulting 
files were saved in .pdbqt format and were subjected to 
molecular docking simulations [27,30-34].

The ligands were treated as flexible, while the protein 
models were set to be rigid. In general, by default, the number 
of modes was set to 9, 3 kcal/mol for the energy range, and 8 
for the exhaustiveness.

The .pdb files of each protein model were processed using 
AutoDock Tools 1.5.7., water molecules and unwanted atoms 
were removed, hydrogens were added, and the nonpolar 
ones were merged. Kollman charges as electrostatic force 
were also added. Missing residues of the PDB models were 
assessed and built using SWISS-MODEL and builder's tool of 
PyMol (for educational use only) [27-29].
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The generation of derivatives was done by selecting the 
topmost active parent compounds. They were subjected to 
single and combined modifications, and metabolite prediction. 

Generation of Derivatives

Interaction Analysis

After the initial docking simulation of the Annona muricata 
phytoconstituents, the protein-ligand complex of the 36 
parent compounds was saved in .pdb format using PyMol 
(education-use-only) and used as the input file in LigPlot Plus. 
All the interacting residues and types of interaction present 
were listed and analyzed [29,36].

For single modifications, the generated molecular 
replacements by MolOpt and SwissBioisostere were considered 
based on the synthetic accessibility scores of the resulting 
analogues [37,38]. Identification and assessment of the points 
of molecular substructural replacements were made after initial 
molecular docking simulation of the topmost parent 
compounds. After single modifications, multisite variations 
were performed. This was done by selecting the best functional 
group per point of replacement of each parent compound 
based on their affinity scores in all protein targets.

Bioisosteric Replacement

Table 1. Average binding energies of the parent compounds towards the six protein models

Family Ligand Average Binding Energy (kcal/mol)

11β-HSD1 PTP1B SIRT6

PDB AF2 PDB AF2 PDB AF2

aNative ligand -12.1 -8.3 -9.7 -6.5 -7.2 -9.3

Substrate b-10.5 b-10.5 - - - -

c-10.1
c-10.3 - - - -

Alkaloids Annonamine (DAME)

Isolaureline (DILE)

Xylopine (DXLE)

Coreximine (DCXE)
Anonaine (DANE)

Reticuline (DRTE) -8.8

-8.0
-8.2
-9.1
-8.1

-8.5

-9.3
-8.8

-9.6

-9.0

-9.1

-8.6

-6.6
-6.2

-7.0

-6.6
-6.6

-7.1
-7.1

-7.3
-7.7

-7.0
-7.8

-7.6 -7.0

-6.1
-6.6

-6.7
-6.7

-6.5

-7.1

-7.4

-8.1
-7.4

-8.2
-7.7

Acetogenins Annonacatalin (GACN)
Annomuricin A (GAMA)
Annomuricin B (GAMB)

Muricapentocin (GMPT)

Annomuricin E (GAME)

Muricoreacin (GMRN)

Murihexocin (GMHN)

Annonacin A(GANA)

Annomuricin C (GAMC)

Gigantetronenin (GGTN)
Cis-corossolone (GCCS)
Annopentocin C (GAPC)

Muricatocin A (GMTA)

Annopentocin B (GAPB)

Annomutacin (GAMT)

Muricatocin C (GMTC)

Annopentocin A (GAPA)

Muricatocin B (GMTB)

-7.0
-7.2
-6.9
-7.1

-7.1
-6.9

-6.9

-7.0

-6.9

-6.9

-6.9

-6.9
-6.9

-7.1

-6.8
-7.1

-6.9

-6.9

-8.4

-8.3

-8.7

-8.3

-8.7

-8.3

-8.6

-8.3

-8.3
-8.6

-8.5

-8.3

-8.2

-8.3

-8.6
-8.5

-8.4
-8.5

-5.4

-5.8

-5.8

-5.4

-5.7

-5.9

-5.5

-5.6

-5.4

-5.7

-5.9

-5.6

-5.4

-5.7

-5.4
-6.0

-5.5

-5.5

-6.2
-6.3
-6.3
-6.3
-6.1
-6.2

-6.2

-6.1

-6.1

-6.1

-6.2

-6.1

-5.6

-6.2
-6.4

-6.2

-6.4
-6.2

-5.6
-5.6
-5.6
-5.5
-5.6
-5.7
-5.6
-5.8
-5.7
-5.7
-5.5

-5.7

-5.7
-5.6

-5.5
-5.6

-5.7
-5.7

-8.0

-7.9

-7.7
-7.8

-8.0

-8.2

-8.0

-7.7

-7.7

-8.0

-7.8

-7.5

-8.1

-8.4

-7.9
-7.5

-7.9

-7.7

Phenolic
compounds

Kaempferol (PKFL)
Kaempferol 3-O-rutinoside (PKOR)

Chlorogenic Acid (PCAD)

Rutin (PRTN)

Epicatechin (PECE)

Quercetin (PQTN)

Catechin (PCTN)

Gallic Acid (PGLA)
-9.0

-8.4

-9.9

-9.7

-8.6

-8.7

-6.3

-8.8
-8.3

-10.6

-6.2

-9.0

-8.8
-8.7

-8.7

-11.0

-7.1
-6.5
-7.7
-5.8
-7.7

-7.4

-7.1
-8.2

-9.0

-6.8
-5.2

-7.6

-7.1

-7.5
-6.7

-7.4

-7.2

-6.8

-6.4
-7.7

-5.6

-6.4
-7.2
-6.2 -9.1

-8.8
-9.7
-8.3
-6.9
-8.3
-7.8
-8.5

compounds
Other

Vomifoliol (RVFL)

Epiloliolide (RELE)
Loliolide (RLLE)
Roseoside (RRSE)

-7.5
-7.3
-8.4
-6.5

-6.8
-7.0

-9.2
-6.8

-5.4

-5.3

-5.2
-5.8

-5.7
-5.7
-6.8
-5.8

-5.5
-5.4

-5.9
-5.5

-7.7
-6.5

-5.9
-6.2

c Product; Cortisol (11β-HSD1)

b Substrate; Cortisone (11β-HSD1)-Control

a Bound ligands for PDB models; CBO (11β-HSD1), F16 (PTP1B)-Control, QUE (SIRT6)-Control

In silico screening of Annona muricata L. Leaf Constituents and Derivatives 
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The appropriateness of grid box parameters is determined 
by calculating the root-mean-square distance (RMSD) of the 
redocked conformations relative to the original pose of the 
co-crystallized ligand. Additionally, the RMSD between 
matching atom pairs is also used to measure the degree of 
similarity between two three-dimensional (3D) protein 
structures [44]. For an accurate prediction of the bound 
conformation and structural similarity of biological 
structures, the RMSD should be less than or equal (≤) to 2Å 
[34], or the smaller the RMSD, the more similar the two 
structures [45]. 

 

The derivatives and their corresponding parent compounds, 
that exhibited more negative binding energies than controls for 
each protein target were subjected to pharmacokinetic and 
physicochemical assessment. The different properties used to 
evaluate the compounds were grouped into major categories 
and can be seen  Appendix A. All these parameters were 
evaluated using SwissADME and ADMETlab 2.0. The SMILES of 
the ligands were used as input values and the CSV outputs were 
downloaded, listed and evaluated [42,43].

The modifications of the 3D structures of all the 
analogues were processed using MarvinSketch 15.6.29 and 
were prepared the same way as the parent compounds and 
subjected to molecular docking.

Results

Metabolite Prediction

ADMET and Physicochemical Analysis

The average binding free energy of the top and lowest 
values generated from molecular docking  was recorded and 
evaluated. All the interacting residues, the numbers and 
types of bonds, including hydrogen bonding and hydrophobic 
interactions were assessed.

Data Analysis

Grid box optimization

Phase I (CYP 450) biotransformation was selected for the 
prediction of the primary metabolites. The .sdf files of the 
active compounds were submitted to SMARTCyp, an online 
web tool used to predict the most liable moieties to 
cytochrome P450 mediated metabolism. Furthermore, 
MetaTox and Biotransformer3.0, all open-access web 
service tools, were also used for in silico metabolite 
prediction [39-41].

Binding energies

 

Single modifications

The grid box and docking parameters were considered 
valid by ensuring that the average RMSD relative to the original 
pose is less than 2Å as shown in  Appendix D. 2BEL model of 
11β-HSD1 has an average RMSD of 0.819 ± 0.003Å, 2CM8 
model of PTP1B has an average RMSD of 0.335 ± 0.001Å, and 
6QCD model of SIRT6 has an average RMSD of 1.733 ± 0.010Å. 
On the other hand, the RMSD of the superimposed PDB (blue) 
and AF2 (yellow) models of 11β-HSD1, PTP1B and SIRT6 target, 
are 1.169Å, 0.687Å, and 1.033Å, respectively. 

The results of grid box optimization are shown in 
 Appendix B. These were then used as grid box parameters 
for the 36 ligands for each PDB model of the protein targets. 
For the AF2 models, the values of binding attributes of site 
one provided by Discovery Studio Visualizer were 
considered as this covers the reported significant residues 
of each protein target. The reported amino acid residues 
listed in  Appendix C were checked and matched in both PDB 
and AF2 models.

After successfully identifying the grid box parameters, the 
36 constituents of Annona muricata leaves were subjected to 
molecular docking. The average top binding energy of each 
protein-ligand pair can be seen in  Table 1. It can be observed 
that the binding energies of the 36 ligands range from of -5.2 
to -11.0 kcal/mol. Compared to controls, PRTN and PKOR 
exhibited the lowest binding energies in AF2 models of 11β-
HSD1 and PTP1B, respectively. In SIRT6, PCTN showed the 
lowest binding energy on both PDB and AF2 models.

After initial docking simulations of the parent 
compounds, the 36 ligands of Annona muricata were 
filtered to identify the active ligands in all models which 
were then considered for drug design. The analysis was 
done by applying a 2.85 kcal/mol threshold based on 
standard error of AutoDock Vina, getting the difference 

For easier comparison, the mean of the binding energies 
of each ligand towards the PDB and AF2 models of each 
protein target were calculated. The mean energy scores are 
generally lower in 11β-HSD1 compared to the other two 
targets. It is followed by SIRT6, except for DAME, DXLE and 
PKOR, which exhibited lower average scores in PTP1B. 
Another noticeable ligand is DANE, which exhibited an equal 
mean energy with SIRT6 and PTP1B. The rest of the parent 
compounds bound to PTP1B with mean binding energies 
have less affinity than SIRT6. This can be found in  Appendix E. 
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Using the top 8 parent compounds as framework, and the 
designation of the potential sites of metabolism (SOMs) and 
possible metabolites, a total of 70 phase 1 biotransformation 
products were predicted, designed and tested against the 
protein targets.

Metabolite prediction

Combined modifications

between the binding energies of the ligands and the 
controls. As a result, the 8 parent compounds – the alkaloids 
DCXE and  DILE, and phenolic compounds PCAD, PECE, PKFL, 
PKOR, PQTN, and PRTN were selected and subjected to 
bioisosteric modifications.

The suggested bioisosteres by MolOpt and SwissBioiostere 
were considered and used in each point of replacement (R). By 
altering the R groups that were present in the basic framework 
of each parent compound, a total of 305 single structurally 
modified analogues were designed and tested against the 
selected protein targets. 

The combined modifications were developed using the best 
bioisosteres and the selection of final points of replacement for 
the 8 selected parent compounds. This was done by comparing 
the average binding energies of each single structurally 
modified analogue across all targets with their corresponding 
parent compound. For a bioisostere to be considered, an 
analogue's binding energy must be less than or equal (≤) to the 
average binding energy of the parent compound. By generating 
all the possible combinations for each parent compound, a 
total of 297 structural analogues were designed.

Docking results

A total of 672 derivatives composed of structural 
analogues and predicted metabolites were generated and 
subjected to molecular docking. Out of these 672 
derivatives, 280 derivatives, all of which are structural 
analogues, exhibited mean binding energies which are less 
than or equal (≤) to the mean binding energy of the control 
for at least one of the three protein targets. Of these 280 
potential derivatives, 137, 155, and 121 compounds have 
shown improved binding energies than the controls for 11β-
HSD1, PTP1B, and SIRT6, respectively. 

In terms of individual targeting, these structural 
analogues were consolidated and ranked based on their 
binding energies to identify the top derivatives for each 
protein target. The structures of the  top 5 derivatives for 
11β-HSD1, PTP1B and SIRT6 are illustrated in Figure 1. 

Interaction analysis

All 36 Annona muricata parent compounds together 
with the known substrates and co-crystallized ligands were 
subjected to interaction analysis with the 3 protein targets. 
Since every protein target has two models, PDB and AF2, 
identification was done per model and summarized to show 
the types of interactions present, and the interacting 
residues involved. The summary of the identified 
interacting amino acid residues and types of interactions are 
shown in Figure 2 and Figure 3.

The interacting residues were further analyzed to 
identify the top active residues that tend to possess a high 
affinity and selective binding to each protein target. The 
types of interactions were also categorized into hydrogen or 
hydrophobic bonds.  

In  Figure 2A, out of 78 (cumulative) ligands in 11β-HSD1, 
Ser170 and Tyr183 exhibited the most number of 
interactions, with 76 and 75 interacting ligands in both 
models, respectively. As for the type of interactions, Ser170 
exhibited the greatest number of hydrogen bonding with all 
the docked ligands having a total of 43, while Ala223 
exhibited the greatest number of hydrophobic bonding with 
a total of 49 interacting ligands as shown in  Figure 3A.

In PTP1B (Figure 2B), among the listed amino acid 
residues, out of 74 (cumulative) ligands, Tyr046, Phe182 and 
Ala217 are most active residues as they show the most 
number interactions with all docked ligands. On the other 
hand, as shown in Figure 3B, Asp048 exhibited the most 
number of hydrogen bond interactions, specifically to 
interact with 37 ligands while Phe182 for hydrophobic 
interactions with 49 interacting ligands.

Among the identified amino acid residues in SIRT6 ( Figure 
2C), all 74 (cumulative) ligands exhibited an interaction with 
the reported amino acid residue Phe064 hence, considered as 
the most active residue. However, for the types of 
interactions, the unreported amino acid residues Arg065 and 
Ile219 exhibited the most significant number of hydrogen and 

Compounds ACM021, ACM036, ACM044, ACM018, and 
ACM024, all of which are derivatives of PRTN are the top 5 
derivatives for 11β-HSD1. In PTP1B, ACM014, ACM021, 
ACM028, ACM020, and ACM024, also derivatives of PRTN, 
are the top 5 ligands. Lastly, BCM008, DCM027, DCM004, 
DCM025, and BCM022 the top 5 derivatives for SIRT6; the 
2nd to 4th compounds are derivatives of PECE while the 
other two are derived from PKOR.
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Figure 1. Two-dimensional structures and binding energies of the top 5 derivatives. A:11β-HSD1, B:PTP1B, C: SIRT6

Figure 2. Summary of the interacting amino acid residues in all protein targets. A:11β-HSD1, B:PTP1B, C:SIRT6
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Figure 2. (Continuation)

Figure 3. Summary of interactions in all protein targets. A:11β-HSD1, B:PTP1B, C:SIRT6

13 Phil J Health Res Dev April-June 2023 Vol.27 No.2, 7-20

In silico screening of Annona muricata L. Leaf Constituents and Derivatives 



ADMET and Physicochemical Analysis

 

 

All the 280 potential derivatives and their corresponding 
parent compounds were subjected to ADMET and 
physicochemical analysis. This analysis was done as an 
additional characterization of the designed analogues and 
their corresponding parent compounds. The criteria for 
evaluating whether a compound is said to fulfill a certain 
property was based on its acceptability in all of the parameters.  

Moreover, in SIRT6, 47.3% or 61 compounds passed all of 
the absorption parameters. These derivatives are analogues 
of PQTN, PECE, DILE, PKFL, and DCXE. Most PRTN, PKOR, and 
PCAD analogues comprising 7.1%, or 22 compounds, passed 
the distribution. The same group of derived compounds 
with 20.9% or 27 compounds passed the metabolism, 26.4% 
or 34 compounds passed the excretion, majority from PECE. 
The derive compounds of PRTN, PKOR, PQTN, and PECE with 

Figure 4 shows that in 11β-HSD1, 2.8% or 4 compounds 
passed all of the absorption parameters. These fully 
absorbed compounds were mostly from DILE and PKFL. For 
distribution parameters, PRTN and PKOR derived analogues 
comprised of 17.7% or 25 compounds passed all the 
conditions. The same group of analogues passed the 
metabolism with 46.1%, or 65 compounds. DILE derived 
compounds comprised of 2.8% or 4 compounds passed the 
excretion while 68.1% or 96 compounds from PRTN and 
PKOR analogues passed the toxicity screening. PRTN 
derived analogues with 4.3% or 6 compounds met the ideal 
physicochemical properties. Lastly, DILE analogues with 5% 
or 5 compounds were predicted to be drug-like molecules.

In PTP1B, most of the PQTN and DILE derived compounds 
passed all absorption screens with 14.9%, or 25 compounds. 
PRTN and PKOR derivatives with 14.3% or 24 compounds 
have the ideal distribution profiles. The same groups with 68 
compounds or 42.2% were also predicted as inactive 
substrates and inhibitors of the major CYP450 isozymes. All 
the 3.1%, or 5 compounds, are DILE analogues that were 
predicted to be well excreted. The non-toxic 60.9%, or 98 
compounds, were from PRTN and PKOR. The derived 
compounds of PRTN, PKFL, PCAD, and PQTN with 12.4% or 20 
compounds met the ideal physicochemical properties. On the 
other hand, 6.2% or 10 compounds that were predicted to be 
drug-like molecules are PQTN and DILE derived compounds.

hydrophobic bonding interactions having 33 and 67 
interacting ligands, respectively (Figure 3C). Moreover, 
Gly111, and Thr213 were reported in previous studies but did 
not show any interactions in any of the parent compounds.

Several studies have been conducted for the potential 
inhibitors of 11β-HSD1 [17,55]. Carbenoxolone, a glycyrrhetinic 
acid derivative, was the first 11β-HSD1 inhibitor tested in 
humans. Even though it is not selective, it has demonstrated the 
ability to increase insulin sensitivity [56]. Gossypol, a polyphenol 
toxin produced from cotton plant seeds and root skin, 
suppressed 11β-HSD1 activity in the rat liver and human adrenal 
gland, indicating that it may be utilized as an inhibitor, although 
it was later discovered to be a non-selective inhibitor [57]. 

The focus of this study is to find potential candidates that 
can competitively inhibit the binding of cortisone to the 
catalytic site of 11β-HSD1, to potentially arrest the action of 
the enzyme in converting cortisone to cortisol hence, 
cortisone was used as a control for screening the experimental 
ligands.

Discussion

Lastly, for synthetic accessibility, all the designed analogues 
and their corresponding parent structures in all targets met 
the criteria of being synthetically accessible.

As shown Appendix D, with the RMSD values, all of which 
are less than 2Å, the comparison of the models and the grid 
box used in redocking were considered structurally similar and 
valid. The grid boxes were then used for all molecular docking 
simulations of the parent compounds and derivatives. They 
were assessed primarily based on their binding energies 
(kcal/mol).

79.1% or 102 compounds passed the toxicity screening. 
Most PECE analogues comprising 33.3%, or 43 compounds, 
possessed the ideal physicochemical properties, and 63.6%, 
or 82 compounds from PQTN and PECE were predicted as 
drug-like molecules.

Grid Box Optimization

Binding Towards 11β-HSD1

The data in Figure 4 were further processed to identify 
the best ligand in each protein target that fulfills the most 
number of properties. The properties of these ligands can be 
found in Appendix F and illustrated in Appendix G . ASM021, 
a derivative of PRTN exhibited -10.8 kcal/mol, had the most 
number of passed ADMET and physicochemical screens and 
considered the best ligand for 11β-HSD1. HCM004, a 
compound derived from PCAD exhibited -8.2 kcal/mol for 
PTP1B, and the PECE-derived compound, DSM008 for SIRT6 
exhibited -8.3 kcal/mol. 
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The amino acid residues of 11β-HSD1 listed in Appendix 
Cwere found to be essential for its catalytic reaction [46-48]. 
Ser170 and Tyr183 have been considered as the most crucial 
interacting residues for catalysis when it comes to the 
reduction of cortisone to cortisol, as these 2 residues form 
the close contact with C-11 hydroxyl of the cortisol. These 

As for the average binding energies of parent compounds 
in both models of 11β-HSD1, PRTN has an equal binding 
energy with the cortisone (-10.5 kcal/mol), and lower binding 
energy than CBO (-10.2 kcal/mol). Considering the ±2.85 
kcal/mol threshold as the standard error of AutoDock Vina, 
most of the parent compounds fall within the acceptable 
range of having a comparable binding affinity with cortisone. 

Based on the average values of the binding free energy 
listed in Table 1, it is evident that the redocked CBO 
exhibited the lowest binding energy, having -12.1 kcal/mol 
in the PDB model, but generating -8.3 kcal/mol in the AF2 
model. In terms of the AF2, it can be observed that out of the 
36 ligands, specifically in comparison with cortisone as the 
control, only PRTN and PKOR exhibited more negative 
binding energies having -11.0 and -10.6 kcal/mol, 
respectively. On the contrary, PGLA has the least binding 
energy for PDB and AF2 models of 11β-HSD1 having -6.3 
kcal/mol and -6.2 kcal/mol, respectively. 

two residues increase the electrophilicity of the reactive C-11 
atom of cortisone, thereby facilitating the proton transfer 
from Tyr183, which is reduced by electrostatic interactions 
with the substrate 11-keto oxygen and thus converting 
cortisol to its active form [45]. These reported residues have 
also been observed after molecular docking simulations of 
the parent compounds to the catalytic site of 11β-HSD1 
enzyme. As shown in  Figure 2A, Ser170 and Tyr183 are the 
most active residues. Ala223 and Ser170 had the most 
number of hydrophobic and hydrogen bond interactions in 
both models. These residues reflect their critical roles in the 
catalytic activity of 11β-HSD1 as they were found to exhibit 
most number of the interactions with docked ligands.

Binding Towards PTP1B

Insulin receptor desensitization is one of the primary 
functions of Protein Tyrosine Phosphatase 1B (PTP1B). Since 
inhibition of this enzyme may prolong the activity of insulin 
receptors, PTP1B has emerged as a potential therapeutic 

Based on the top 5 structural analogues for 11β-HSD1 
Figure 1A, the presence of phenyl ring as a replacement to R8 
and R9 ether linkers, R2, R3, and R7 hydroxyls replaced by a 
fluoro substituent, and the R4 and R6 hydroxyls substituted 
by methyl improved the binding energies towards 11β-HSD1.

Figure 4. Evaluation of the 280 potential derivatives for each protein target based on ADMET-physicochemical properties
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The active site of PTP1B consists of the amino acid 
residues His214–Arg221, which contain the catalytic site 
nucleophiles Cys215 and Arg221. Tyr046, Val049, Lys120, 
Asp181, Phe182, and Gln262 are additional residues that 
form the sides of the catalytic cleft and contribute to catalysis 
and substrate recognition [49-51]. These reported essential 
amino acid residues were all recorded to have interactions 
with the docked ligands. Moreover, as shown in in  Figure 2B, 
Ty046, Phe182 and Ala217 were found to be the most active 
residues to interact with all of the docked ligands. On the 
other hand, Asp048 and Phe182 has the greatest number of 
interactions in all ligands in both PDB and AF2 models.

In PTP1B, as shown in Figure 1B, these explain that the 
substitution of phenyl ring as the ether linker groups, 
replacement of fluoro substituent in the R2, R3, and, R7 
hydroxyl groups, placement of methyl substituent at R4, and 
R6 hydroxyls, and the retention of original substituents such 
as the carbonyl and hydroxyl group at R1, and R5 positions 
improved the binding affinities towards PTP1B enzyme.

Binding Towards SIRT6

After the docking simulation of the parent compounds in 
PTP1B, none of the 36 ligands outperformed the binding 
energy of the bound control in the PDB model. In contrast to 
this, some parent compounds showed lower binding 
energies with control in AF2 model including PRTN and PKOR 
as the top parent compounds. RLLE and PGLA generated the 
least binding energy having both -5.2 kcal/mol. Based on the 
average binding energies of parent compounds in both 
models and applying the ±2.85 kcal/mol as the standard 
error, all of the parent compounds fall within the acceptable 
range of having a comparable binding affinity.

target for type 2 diabetes [20]. Vanadium containing 
compounds were investigated as PTP1B inhibitors. However, 
randomized clinical trials for the treatment of diabetes 
concluded that these drugs caused GI distress, showed low 
efficacy among diabetic patients, and showed large patient-
to patient variability [58]. Triaryl-sulfonamides were reported 
to form hydrogen bonding interactions with critical residues 
of PTP1B [59]. However, these potential compounds faced 
the limitation of poor cell membrane permeability [60]. 

Sirtuin-6 or Mono-ADP ribosyltransferase-sirtuin-6, 
although it is associated with physiological and pathological 
processes, it has also been recognized to have a vital role in the 
metabolism of glucose. Several studies have proven that the 
elimination of SIRT6 from the entire body resulted in severe 
hypoglycemia in mice. Its absence is associated with hepatic 

In contrast, RELE has the least binding energy for both PDB 
and AF2 models, having -5.4 kcal/mol and -5.9 kcal/mol, 
respectively. As for the average binding energies of parent 
compounds in both models of SIRT6 and applying the 2.85 
kcal/mol as the standard error, all of the parent compounds 
fall within the acceptable range of having a comparable 
binding affinity having PQTN and PCTN as the top compounds.

SIRT6 enzyme has been implicated in several biological 
processes including glucose homeostasis regulated by beta 
cells, its extended acyl binding channel confirm its specificity 
among other isoforms. Reported amino acid residues in the 
binding site region has also been documented to play roles in 
SIRT6 functions [53,54]. The reported amino acid Phe064 was 
considered to be the most active residue to interact with the 
docked ligands in both PDB and AF2 models. This reflects that 
Phe064 is the most crucial amino acid residue in SIRT6. In 
contrast to this, the additional interacting residues Ile219 and 
Arg065 were observed to have the most number of 
hydrophobic and hydrogen bond interactions in both models 
hence, can be added as significant residues for SIRT6 functions. 

As a result of docking analysis, since quercetin served as 
the control for SIRT6 enzyme and one of the parent 
compounds is quercetin as well, they generated the same 
binding energies for PDB model having -7.2 kcal/mol. 
However, in AF2 model, PQTN as experimental ligand yielded 
a lower binding energy than the control having -8.5 kcal/mol. 
On the other hand, aside from PQTN, PECE also shows the 
same binding energy as compared to control in PDB model. 
PCTN has -7.7 kcal/mol and -9.7 kcal/mol being both showed 
a better binding energy in both models. These docking 
results support the study proving that quercetin and its 
based compounds catechin and epicatechin have good 
binding profiles and biological effects against SIRT6 [52].

steatosis and insulin resistance. Moreover, its activation also 
provides protection against obesity and diabetes [51]. The 
flavonoids luteolin and quercetin were also evaluated as SIRT6 
modulators and demonstrated a dose-dependent role, 
whereby they exert inhibitory activity at low concentrations 
and modulatory activity at high concentrations [54].

Based on the top 5 compounds in SIRT6 as shown in Figure 
1C, BCM008 and BCM022 as PKOR derivatives, along with 
PECE-derived compounds DCM004, DCM027, and DCM025, 
were the best ligands to have the highest binding affinity 
towards the SIRT6 target. These explain that the attachment of 
phenyl ring in the R8 ether linker, replacement of fluoro 
substituent in R6 hydroxyl, and methyl group in the R3 hydroxyl 
of PKOR improved their binding energies. Also, the binding 
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ADMET and Physicochemical Predictions

energies improved in PECE analogues with methylpropane and 
a methyl group at R2 and R3 hydroxyls, methyl, -NHOH, or a 
fluoro substituent at R4 hydroxyls.

In summary, in silico methods were utilized in this study for 
the preliminary screening of the selected phytoconstituents 
of A. muricata and derivatives for potential binding with the 
protein targets related to T2DM: 11β-HSD1, PTP1B, and SIRT6. 
Based on the binding energies of the parent compounds and 
derivatives, their differences still fall within the ±2.85 kcal/mol 
standard error of AutoDock Vina hence a significant difference 
cannot be claimed. This means that those parent compounds 
and derivatives have comparable binding affinity as the 
controls. Out of 280 potential derivatives, 137, 155, and 121 
compounds have shown improved binding energies than the 
controls for 11β-HSD1, PTP1B, and SIRT6, respectively. 
Moreover, none of the metabolites have exhibited better 
binding than controls.

Structural modifications of the basic framework of the 
parent compounds were also noticed to improve the 

In PTP1B, out of 155 analogues, HCM004, a compound 
derived from PCAD, fulfills the most number of ADMET and 
physicochemical filters. HCM004 was predicted to have 
ideal distribution, metabolism, toxicity, drug-likeness, and 
physicochemical profiles. However, HCM004 was predicted 
to have an increased property of being a P-gp substrate. 

In pharmacokinetic and physicochemical screening, 
various parameters of absorption, distribution, metabolism, 
excretion, toxicology (ADMET), and drug-like properties 
were considered.

Lastly, for SIRT6, the PECE-derived compound, DSM008, 
had the most accepted profiles out of the 121 analogues. 
Except for having a short half-life, DSM008 was predicted to 
be a well-absorbed, distributed, inactive inhibitor and 
substrate of the major CYP450 isozymes, non-toxic, a drug-
like molecule, and has the ideal solubility profile, it also 
decreased the property of being an active CYP2C9 substrate 
and a compound with a low therapeutic index. 

As for the best candidate for each protein target, for ASM021 
in 11β-HSD1, minimal consideration for some modifications in 
dosing and contraindications might improve the excretion and 
absorption parameters. Except for having poor absorption and 
excretion profiles, ASM021 was predicted to be a well 
distributed, inactive substrate and inhibitor of the CYP450 
isozymes, non-toxic, and has an acceptable solubility profile. 
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Interaction analysis reveals that most of the reported 
binding residues have been observed to interact with most 
of the experimental ligands. As indicated by the presence of 
aromatic compounds, most of the observed interactions 
were hydrophobic. The most active residues in 11β-HSD1 
are Ser170 and Ala223, both of which can form hydrogen 
and hydrophobic bond interactions. On the other hand, the 
most active PTP1B residues involved in hydrogen bond and 
hydrophobic interactions are Asp048 and Phe182. Lastly, 
Arg065 and Ile219 exhibited the significant number of 
hydrogen and hydrophobic bond interactions in SIRT6.

Based on these findings, some recommendations can be 
considered. To fully assess the enzymatic activity of the 
designed compounds found to have a comparable binding 
affinity with the target proteins, this study suggests a 
preparatory drug synthesis, specifically for the top 5 ligands in 
11β-HSD1, PTP1B, and SIRT6, which exhibited the most 
spontaneous binding with each protein target. And then can 
be used in performing in vitro and in vivo experiments to 
determine their actual biological effects – whether they will 
serve as inhibitors, activators, or modulators of the target 
enzymes of interest.
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Appendix A - Criteria for pharmacokinetic and physicochemical evaluation

Appendix B - Grid box values

Appendix C - Reported amino acid residues of the protein targets



Appendix D - Superimposed redocked conformations of the bound ligands and the PDB and AF2 
models of the protein targets 



Appendix E - Mean binding energies of the parent compounds towards the three protein targets



Appendix F - Pharmacokinetic and physicochemical screening results of the best ligand in protein target



Appendix G - Two-dimensional structures of the top ligands for each target based on ADMET-
physicochemical profiles
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